2022

COMPUTER SCIENCE — HONOURS

Paper: CC-7

(Operating Systems)

Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any four questions from the rest.

1. Answer any five questions:

 2×5

- (a) Differentiate between multiprogramming and multiprocessing.
- (b) What is the functionality of fork() system call?
- (c) Mention the use of Medium-term scheduler.
- (d) What is context-switching?
- (e) Differentiate between preemptive and non-preemptive process scheduling.
- (f) Why is 'aging' performed?
- (g) Explain the functionality of spooling.
- (h) State any two functions of dispatcher.
- 2. (a) Consider the following table:

Process	Arrival Time	Burst Time (ms)	
P_1	0		
P_2	0	8	
P_3	2	7	
P_4	5	3	
P_5	11	1	

- (i) If the CPU scheduling is SJF with preemption, what would be the average waiting time and average turnaround time?
- (ii) If the CPU scheduling is round-robin with time quantum of 3 ms, what would be the average waiting time and the average turnaround time?
- (b) What is starvation? Name two scheduling schemes that suffer from the problem of starvation. (3+3)+(2+2)

Please Turn Over

- 3. (a) What is a 'safe state'? How does the Banker's algorithm ensure that a system is in a safe state? Explain briefly.
 - (b) Consider the following snapshot of a system:

Process No.	Allocation A B C	Max A B C	Available A B C
P_0	0 1 0	7 5 3	3 3 2
P_1	200	3 2 2	
P_2	3 0 2	902	
P_3	2 1 1	2 2 2	
P_4	0 0 2	4 3 3	

Answer the following questions using Banker's algorithm:

- (i) What is the content of the need matrix?
- (ii) Is the system in a safe state?

(2+2)+(4+2)

- 4. (a) What is the dining philosophers problem? How is it related to the critical section problem?
 - (b) What are the conditions that a solution to the critical section must satisfy?
 - (c) How will you solve the Producer-Consumer problem using system calls?

(2+1)+3+4

- 5. (a) What do you understand by demand paging?
 - (b) Given references to the following pages by a process:

Find the number of page faults if the process has 3 page frames available to it, using both LRU and Optimal page replacement. 2+(4+4)

- 6. (a) Explain the difference between physical and logical address.
 - (b) Suppose the memory is partitioned into 5 blocks of 100 KB, 500 KB, 200 KB, 300 KB and 600 KB. How would the first-fit, best-fit, worst-fit algorithms place processes of 212 KB, 417 KB, 112 KB and 426 KB (in that order)?
 - (c) When does external fragmentation occur? How can you overcome this fragmentation? 2+6+2
- 7. (a) Define seek time and latency time.
 - (b) Why is seek optimisation more important than rotational optimization?
 - (c) Given the order of track requests below:

70, 140, 50, 125, 30, 25, 160 and the initial position of the R/W head is 60. Use the following algorithms to find the total seek time:

(i) FCFS (ii) SSTF.

2+2+(3+3)

- 8. (a) What are i-nodes? Mention two of its uses.
 - (b) Mention the use of FAT.
 - (c) Discuss some functionalities of the kernel.
 - (d) What is the mechanism of interrupt I/O cycle?

(2+1)+2+2+3